BCA-202(N)

B. C. A. (Second Semester)

EXAMINATION, 2016

(New Course)

Paper Second

DIGITAL ELECTRONICS AND COMPUTER ORGANIZATION

Time: Three Hours [Maximum Marks: 75]

Note: Attempt all questions from Section A and two questions from Section B and two questions from Section C.

Inst. The candidates are required to answer only in serial order. If there are many parts of a question, answer them in continuation.

Section-A

(Short Answer Type Questions)

Note: Attempt all questions from this Section. Each question carries 3 marks.

1. (A) Implement the following Boolean function with NAND gate only:

$$Y(A, B, C) = \sum m (0, 1, 3, 5)$$

(B) State and prove that De-Morgan's theorem and simplify the following expression:

$$(\overline{A} + B + \overline{C})(\overline{A} + B + C)$$

- (C) Explain half adder with truth table and logic circuit diagram.
- (D) Differentiate between static RAM and dynamic RAM.
- (E) Differentiate between S. O. P. and P. O. S. methods with their maxterms and minterms.
- (F) What is ring counter? Explain its working.

- (G) What is flip-flop? Explain the working of RS flip-flop using logic diagram and excitation table.
- (H) Explain the working of ROM. Design 32 x 8 ROM structure.
- (I) Differentiate between combinational and sequential circuit.

Section-B

(Long Answer Type Questions)

Note: Attempt any two questions from this Section. Each question carries 12 marks.

- 2. (a) Explain all logic gates with truth table and logic circuit design.
- (b) Simplify using k-map:

$$F(A, B, C, D) = \sum m(1, 3, 7, 11, 15) + d(0, 2, 5)$$

3. (a) Realize the following Boolean expression using 4×1 multiplexer:

$$Z + \overline{ABCD} + \overline{ABCD} + A\overline{BCD} + A\overline{BCD} + A\overline{BCD} + ABCD$$

- (b) Explain full-adder with truth table. Construct logic diagram of full-adder using half-adder.
- 4. Write short notes on the following:
- (a) Half subtractor
- (b) Multiplexer
- (c) Binary to BCD converter

- 5. Convert RS flip-flop to T flip-flop using Excitation table. 3-bit
- (b) What is modulus counter? Design 3 bit asynchronous counter using J-K flip-flop.

Section-C

(Long Answer Type Questions)

Note: Attempt any two questions from this Section. Each question carries 12 marks.

- 6. (a) Explain the basic read operation in cache memory organization.
- (b) Explain the working with block diagram of RAM.
- 7. What is Decoder? Explain the Decoder expansion. Construct a logic diagram of 4 to 16 line decoder using 3 to 8 line decoder.
- 8. What is virtual memory? Discuss the technique to manage a virtual memory organization in detail.
- 9. Write short notes on the following:
- (a) Shift register
- (b) D flip-flop
- (c) Divide-by-N ripple counter
- (d) PROM and EPROM