BCA-205(N)

B. C. A. (Second Semester) EXAMINATION, May, 2018

(New Course)

Paper Fifth

MATHEMATICS-II

Time: Three Hours]

[Maximum Marks: 75

Note: Section A is compulsory. Attempt any seven questions from Section B and any one question from Section C.

Inst.: The candidates are required to answer only in serial order. If there are many parts of a question, answer them in continuation.

Section-A

8 each

http://csjmuonline.com

http://csjmuonline.com

1. (a) If $u = e^{xyx}$, show that:

$$\frac{\partial^3 u}{\partial x \, \partial y \, \partial z} = (1 + 3 \, xyz + x^2 \, y^2 z^2) \, e^{xyz}$$

(b) Show that the lines whose direction cosines are given by the equations 2l + 2m - n = 0 and mn + nl + lm = 0 are at right angle.

(B-57) P. T. O.

[2]

BCA-205(N)

2. (a) Discuss the maxima or minima of the function:

$$u=x^3-y^3-3x$$

(b) Evaluate: http://csjmuonline.com

$$\int_0^1 \int_0^x e^{\frac{y}{x}} dx dy$$

Section-B

6 each

http://csjmuonline.com

3. For any set A, B and C show that:

$$A \sim (B \cup C) = (A - B) \cap (A - C)$$

- 4. If R be a relation in the set of integer I defined by $R = \{(x, y) : x \in I, y \in I, x y = 5k \text{ or } x y \text{ is divisible by 5}\}$. Prove that R is an equivalence relation.
- 5. In a group of 25 people, 12 speak Hindi, 4 speak both English and Hindi and all people speak at least one of the two languages. How many people only English not Hind? How many speak English?
- A plane meets the co-ordinate axes in A, B and C such that the controld of triangle ABC is the point (a, b, c).

Show that the equation of the plane is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$.

7. If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x + y} \right)$, show that :

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$$

8. Evaluate the following triple integral:

$$\int_{x=0}^{2} \int_{y=0}^{3} \int_{z=0}^{1} (x+y+z) \, dx \, dy \, dz$$

(B-57)

http://csjmuonline.com

http://csjmuonline.com

9. Determine whether the following Hasse diagrams represent lattice or not:

- 10. Change the order of integration in the double integral $\int_0^a \int_y^a \frac{x}{x^2 + v^2} dy dx \text{ and evaluate.}$
- 11. Find the equation to the sphere through the circle:

$$x^{2} + y^{2} + z^{2} = 9$$
$$2x + 3y + 4z = 5$$

and the point (1, 2, 3).

12. Define distributive lattice and prove that in a distributive lattice, if an element has a complement, then this complement is unique.

(B-57) P. T. O.

17 each

- Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and R be the relation on A \times A defined as (a, b) R (c, d) if a + d = b + c. Prove that R is an equivalence relation.
 - Prove that if $f: A \to B$ is one-one onto mapping, then $f^{-1}: B \to A$ will be one-one onto mapping.
- 14. (a) If:

$$z = e^{u} f(v)$$

$$u = ax + by$$

$$v = ax - by$$

show that:

$$b\frac{\partial \overline{z}}{\partial x} + a\frac{\partial z}{\partial y} = 2abz$$

- Find the image of the point (1, 3, 4) in the plane 2x - y + z + 3 = 0.
- Prove that the lines: 15. (a)

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$

and
$$\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$$
.

are coplanar, find their point of intersection. Also find the equation to the plane containing them.

Find the area of between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.

BCA-205(N)

3300

(B-57)

http://csjmuonline.com