BCA-105(N)
 B.C.A. (First Semester)
 EXAMINATION, Dec.-2015
 (New Course)
 Paper- Fifth
 MATHEMATICS-1

[Time: Three Hours]
[Maximum Marks: 75]
Note: Attempt questions from all the questions at directed.
SECTION-A
Note: Attempt all the questions, each will carry 3 marks. Short Answer Type Questions Only

1. A Show that the adjoint of
$\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$
is three times its transpose.
B. Find the equation at the line joining $(1,2)$ and (3.6) using determinants.

$$
\text { If } f(x)=\left\{\begin{array}{cc}
\frac{\sin [x]}{[x]} & , \text { if }[x] \neq 0 \\
0 & , \text { if }[x]=0)\}
\end{array}\right\}
$$

Where $[\mathrm{x}$] denotes the greatest integer less than or equal to x , then find limt, $\ldots 0$ $\mathrm{f}(\mathrm{x})$.

Show that $\mathrm{f}(\mathrm{x})$ - xix$]$ is differentiable at $\mathrm{x}=0$.
E. Differentiate $\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}$ with respect to $\cos ^{-4}\left(2 x^{2}-1\right)$.
F. Evaluate $\int_{0}^{\infty} \frac{x^{5}\left(1-x^{5}\right)}{(1+x)^{24}}$
G. Evaluate $\int \frac{d x}{x\left(x^{2}+1\right)}$
II. Find the angle between the vectors $\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=6 \hat{i}-3 \hat{j}+2 \hat{k}$.

1. If $\vec{a}=2 \dot{i}+\dot{j}+3 \hat{k}$ and $\vec{b}=5 \hat{i}+5 \hat{j} \cdot \vec{k}$. find $(\vec{a}+\vec{b}) \times 2 \vec{b}$ and $(\vec{a}+\vec{b}) \times 2 \vec{b}$

SECTION-B

12 Marks Each Question
Long Answer Type Questions
(02 out of 04 questions)
Find the Eigen value and Eigen vector of the following matrix
$A=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$
4. (a) Reduce the following matrix into normal form and hence find its rank
$A=\left[\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$
(b) Prove that

$$
\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

5. (a) Show that the following limit does not exist

$$
\lim _{x \rightarrow 3} \frac{|x-3|}{x-3}
$$

(b) Discuss the nature of discontinuity of the following function at the origin

$$
f(x)= \begin{cases}\frac{e^{1 / x}-e^{-x / x}}{e^{1 / x}+e^{1 / x}} & , \text { when } x \neq 0 \\ 0 & , \text { when } x=0\end{cases}
$$

SECTION-C

12 Marks Each Question
Long Answer Type Questions
(02 out of 04 questions)
6. (a) Discuss the maxima and minima of the function
$\mathrm{f}(\mathrm{x})=\frac{x}{1+x^{2}}$
(b) Trace the curve
$A y^{2}=x^{2}(a-x)$
(a) Evaluate $\int \sec ^{3} x d x$
(b) if $\ln =\int_{0}^{\pi / 4} \tan ^{*} x d x$,
show that $\operatorname{In}+\operatorname{In}-2=\frac{1}{n-1}$
8. (a) Evaluate $\int_{0}^{\infty} x^{\infty} e^{+x^{n}} d x$, when m, n, a are positive constants.
(b) Evaluate $\int \cos x \cos 2 x \cos 3 x d x$
9. (a) If $(\vec{a},) \vec{b}, \vec{c}$ are three non-coplanar vectors show that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]=[\vec{a}, \vec{b}, \vec{c}]^{2}$
(b) Prove that

$$
\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a} .
$$

