BCA-105(N)

B.C.A. (First Semester)

EXAMINATION, Dec.-2015

(New Course)

Paper- Fifth

MATHEMATICS-1

[Time: Three Hours] [Maximum Marks: 75]

Note: Attempt questions from all the questions at directed.

SECTION-A

Note: Attempt all the questions, each will carry 3 marks. Short Answer Type **Questions Only**

١.

B. Find the equation at the line joining (1, 2) and (3.6) using determinants.

If
$$f(x) = \begin{cases} \frac{\sin[x]}{x} & \text{if } [x] \neq 0 \\ [x] & \text{o } & \text{if } [x] = 0 \end{cases}$$

Where [x] denotes the greatest integer less than or equal to x, then find limt, $..._0$ f(x).

Show that f(x)-xix] is differentiable at x = 0.

- Differentiate $\tan^{1/3} \frac{x}{\sqrt{1-x^2}}$ with respect to $\cos^{1/3} (2x^2 1)$. Evaluate $\int_{0}^{\infty} \frac{x^8 (1-x^8)}{(1+x)^{24}}$ E.
- F.
- Evaluate $\int \frac{dx}{x(x^{n+1})}$ G.
- Find the angle between the vectors $\vec{a} = 2\hat{i} + 2\hat{j} \hat{k}$ and $\vec{b} = 6\hat{i} 3\hat{j} + 2\hat{k}$. H.
- If $\vec{a} = 2\vec{i} + \vec{j} + 3\vec{k}$ and $\vec{b} = 5\vec{i} + 5\vec{j} \vec{k}$, find $(\vec{a} + \vec{b}) \times 2\vec{b}$ and $(\vec{a} + \vec{b}) \times 2\vec{b}$ 1.

SECTION-B

12 Marks Each Question

Long Answer Type Questions

(02 out of 04 questions)

Find the Eigen value and Eigen vector of the following matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

4. (a) Reduce the following matrix into normal form and hence find its rank

$$A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$

(b) Prove that

$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$$

5. (a) Show that the following limit does not exist

$$\lim_{x\to 3} \frac{|x-3|}{x-3}$$

(b) Discuss the nature of discontinuity of the following function at the origin

$$f(x) = \begin{cases} \frac{e^{1/x} - e^{-x/x}}{e^{1/x} + e^{-1/x}}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$

SECTION-C

12 Marks Each Question

Long Answer Type Questions

(02 out of 04 questions)

6. (a) Discuss the maxima and minima of the function

$$f(x) = \frac{x}{1 + x^2}$$

(b) Trace the curve

$$Ay^2 = x^2 (a - x)$$

(a) Evaluate $\int sec^3 x dx$

(b) if
$$\ln = \int_0^{\pi/4} \tan^* x \, dx$$
,

show that In+ In-2 = $\frac{1}{n-1}$

- Evaluate $\int_{0}^{\infty} x^{n} e^{+x^{n}} dx$, when m, n, a are positive constants. (a) 8.
 - (b)
- Evaluate $\int \cos x \cos 2x \cos 3x \, dx$ If $(\vec{a},)$ \vec{b} , \vec{c} are three non-coplanar vectors show that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a}, \vec{b}, \vec{c}]^2$ (a) 9.
 - Prove that (b) $\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$