BCA-105(N)

B. C. A. (First Semester)
EXAMINATION, Dec., 2016
(New Course)
Paper Fifth
MATHEMATICS-I

Time: Three Hours]
[Maximum Marks: 75
Note: Attempt questions from all Sections as directed.
Inst. The candidates are required to answer only in serial order. If there are many parts of a question, answer them in continuation.

Section-A
(Short Answer Type Questions)
Note: Attempt all questions from this Section. Each question carries 3 marks.

1. (A) Find cofactor of the elements of the first row of the determinant:
$\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 0 \\ 6 & 2 & 7\end{array}\right]$
(B) Find the rank of matrix:
$\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10\end{array}\right]$
(C) evaluate:

$$
\lim _{x \rightarrow a} \frac{x^{m}-a^{m}}{x-a}
$$

(D) Write the statement of Rolle's theorem with suitable example.
(E) By using Maclaurian's theorem expand".
(F) Evaluate:
$\int \sin (\log \cdot x) d x$
(G) Show that:
$\mathrm{F}(\mathrm{I})=1$
(H) Find the angle between $\mathrm{A}=2 \mathrm{i}+2 \mathrm{j}-\mathrm{k}$ and $\mathrm{B}=6 \mathrm{i}-3 \mathrm{j}+2 \mathrm{k}$.
(I) By using Leibnitz theorem find the rth differentiation of $\mathrm{x}^{3} \cos . \mathrm{x}$

Section-B

(Long Answer Type Questions)

Note: Attempt any two questions. Each question carries 12 marks.
2. Use Cramer's rule to solve the following system of equations:
$X-4 y-z=11$
$2 x-5 y+2 x=39$
$-3 x+2 y+z=1$
3. Find the Eigen values and the corresponding Eigen vector for the following matrix:
$\left[\begin{array}{ccc}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right]$
4. Examine for continuity at the origin of function:

$$
f(x)=\left\{\begin{array}{cc}
\frac{x-|x|}{x} & \text { if } x \neq 0 \\
1 & \text { if } x=0
\end{array}\right.
$$

5. Differentiate the following w. r. to x.:
(i) $\mathrm{e}^{3}+\log _{e} \mathrm{x}+\mathrm{a}^{3}$
(ii) $\cos \left(\cot x^{2}\right)$
(iii) $\mathrm{x} \sqrt{x}$

Section C

(Long Answer Type Questions)

Note: Attempt any two questions. Each question carries 12 marks.
6. (a) If $f(x)=(x-1)(x-2)(x-3)$ and $a=0, b=4$, find e using Lagrange's mean value theorem.
(b) Expand $\sin \mathrm{x}$ in power of $\left(x-\begin{array}{l}x \\ 2\end{array}\right)$ by using Taylor's series.
7. (a) Find the maximum and minimum value of the function $f(x)=x^{3}-2 x^{2}+x+6$
(b) By using L'Hospital rule evaluate:

$$
\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x}}
$$

8. Evaluate the following integral function:
(i) $\int \sin ^{3} x \cos x d x$
(ii) $\int_{0}^{1} \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x$
9. (a) Show that:

$$
\int_{0}^{\pi / 6} \cos ^{6} 3 \theta \sin ^{2} 6 \theta d \theta=\frac{7 \pi}{384}
$$

(b) Show that three vectors $2 \mathrm{i}+6 \mathrm{j}+7 \mathrm{k}, 7 \mathrm{i}-8 \mathrm{j}+9 \mathrm{k}$ and $3 \mathrm{i}+20 \mathrm{j}+5 \mathrm{k}$ are collinear.

