Roll No.

BCA-404(N)

B. C. A. (Fourth Semester) **EXAMINATION, May, 2018**

(New Course)

Paper Fourth

OPTIMIZATION TECHNIQUES

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt questions from all Sections as directed.

Inst.: The candidates are required to answer only in serial order. If there are many parts of a question, answer them in continuation.

Section---A

(Short Answer Type Questions)

Note: All questions are compulsory. Each question carries 3 marks.

- 1. (A) What is the role of OR in decision-making?
 - Explain the following terms in context of queuing problem:
 - (i) Service Discipline
 - (ii) Service Channel
 - Explain briefly the following:
 - (i) Carrying cost
 - (ii) Set-up cost

(B-53) P. T. O.

http://csjmuonline.com

http://csjmuonline.com

[2]

BCA-404(N)

(D) Solve graphically the following LPP:

Max.:

$$z = 5x_1 + 7x_2$$

Subject to the constraints:

$$x_1 + x_2 \le 4$$

$$3x_1 + 8x_2 \le 24$$

$$10x_1 + 7x_2 \le 35$$

and non-negative conditions are $x_1, x_2 \ge 0$.

Convert the LPP into standard form:

Maximize:

$$z=3x_1+2x_2$$

Subject to the constraints:

$$3x_1 + 2x_2 \le 6$$

$$x_1 - x_2 \ge -1$$

$$x_1 + 2x_2 \ge 1$$

and $x_1, x_2 \ge 0$.

- Explain the following terms:
 - (i) Incoming and outgoing vector
 - (ii) Slack and surplus variable
- Write the dual of the following LPP:

Maximize:

$$z = x_1 + 2x_2 + 3x_3$$

Subject to the constraints:

$$3x_1 + x_2 + x_3 \le 12$$

$$x_1 + 2x_2 + 4x_3 \le 20$$

$$2x_1 + 5x_2 - x_3 \le 18$$

and $t_1, x_2, x_3 \ge 0$.

(B-53)

http://csjmuonline.com

BCA-404(N)

Solve the following minimal assignment problem:

		Man			
		1	2	3	4
	I	12	30	21	15
Job	Ħ	18	33	9	31
	Ш	44	25	24	21
	IV	23	30	28	14

(I) initial BFS of the following Find transportation problem by lowest cost entry method:

		Warehouse			Ē4	
		\mathbf{W}_{1}	W ₂	W ₃	W ₄	Factory Capacity
•	F	19	30 30	50	10	7
Factory	F ₂	70	30	40	60	9
	F ₃	40	8	70	20	18
Wareho Requirer		5	8	7	14	34

Section-B

(Long Answer Type Questions)

Note: Attempt any two questions. Each question carries 12 marks.

2. Solve the following LPP by Simplex method:

Maximize:

http://csjmuonline.com

$$z = 3x_1 + 5x_2 + 4x_3$$

Subject to:

$$2x_1 + 3x_2 \le 8$$
$$2x_2 + 5x_3 \le 10$$
$$3x_1 + 2x_2 + 4x_3 \le 15$$

and $x_1, x_2, x_3 \ge 0$.

- 3. A branch of Punjab National Bank has only one typist. Since the typing work varies in length (number of pages to be typed), the typing rate is randomly distributed approximating a Poisson distribution with mean service rate of 8 letters per hour. The letters arrive at a rate of 5 per hour during the entire 8-hour work day. If the typewriter is valued at ₹ 1.50 per hour, determine: http://csimuonline.com
 - Equipment utilization
 - The per cent time that an arriving letter has to wait.
 - (iii) Average system time.
 - (iv) Average cost due to waiting on the part of typewriter i.e. it remaining idle.
- 4. The following table gives the cost of transporting material from supply point A, B, C and D to demand points E, F, G, H and I:

		То				
		_ E	F	G	H	I
	A	8	10	12	17	15
From	В	15	13	18	11	9
LIOIU	С	14	20	6	10	3
	D	13	19	7	6	.12

(B-53) P. T. O.

http://csjmuonline.com

http://csjmuonline.com

http://csimuonline.com

http://csjmuonline.com

10

(B-53)

http://csjmuonline.com

The present allocation is as follows:

A to E 90, A to F 10, B to F 150, C to F 10, C to G 50. C to I 120, D to H 210, D to I 70.

Find if this allocation is optimum. If not find and optimum schedule.

5. A car hire company has one car at each of five depots a, b, c, d and e. A customer requires a car in each town. namely A, B, C, D and E. Distance (in kms) between depots (origins) and towns (destinations) are given in the following distance matrix:

	а	ь	c	d	e
A	160	130	175	190	200
В	135	120	130	160	175
C	140	110	155	170	185
D	50	50	80	80	110
E	55 -	35	70	80	105

How should cars be assigned to customers so as to minimize the distance travelled?

Section-C

(Long Answer Type Questions)

Note: Attempt any two questions. Each question carries 12 marks. http://csimuonline.com

- 6. A particular item has a demand of 9000 units/year. The cost of one procurement is ₹ 100 and holding cost per unit is ₹ 2.40 per year. The replacement is instantaneous and no shortage allowed. Determine:
 - (i) The economic lot size

http://csjmuonline.com

http://csjmuonline.com

- The number of orders per year
- The time between orders
- (iv) The total cost per year if the cost of one unit is ₹ 1.
- 7. The purchase price of a machine is ₹ 52,000. The installation charges amount to ₹ 14,400 and its scrap value in any only ₹ 6,400. The maintenance cost in various years is given below:

Year	Maintenance cost (₹)
1	1,000
2	3,000
3	4,000
4	6,000
5	8,400
6	11,600
7	16,000
. 8	19,200

After how many years the machine be replaced ? Assume that the machine replacement can be done only at the year ends.

- Give Johnson's procedure for determining an 8. (a) optimal sequence for processing jobs on two machines.
 - There are seven jobs, each of which has to go through the machines A and B in the order AB. Processing time in hours are given as: - 10

(B-53)

http://csjmuonline.com

http://csimuonline.com

(B-53) P. T. O. http://csjmuonline.com

[7]

BCA-404(N)

Job	Machine A	Machine B
1	3	8
2	12	10
3	15	10
4	6	6
5	10	12
6	11	1
7	9	3

Determine a sequence of these jobs that will minimize the total elapsed time T. Also find T and idle time for machines A and B.

9. A company has two grades of inspector I and II who are to be assigned for a quality control inspection. It is required that at least 2000 pieces be inspected per 8-hours day. Grade I inspector can check pieces at the rate of 50/hour with an accuracy of 97%. Grade II inspector can check pieces at the rate of 40/hour with an accuracy of 95%. The wage rate of grade I inspector is ₹ 4.50/hour and that of grade II is ₹ 2.50/ hour. Each time an error is made by an inspector, the cost to the company is one rupee. The company has available for the inspection job 10 grade I and 5 grade II inspector. Formulate the problem to minimize total cost of inspection.

BCA-404(N)

2,300